«Формирование биологического разнообразия в условиях современной трансформации природной среды»

Челябинская область (Южный Урал) расположена в зональном лесостепном экотоне и поэтому леса на ее территории, как в других аналогичных экотонах, особенно уязвимы и чувствительны перед происходящими климатогенными изменениями (Körner, 2012; Швиденко, Щепащенко, 2013). Лесистость территории области небольшая и составляет всего 29,5%. Ценность лесов Челябинской области подчеркивается тем, что 78% лесного фонда представлены защитными лесами и только 22% - эксплуатационными. Основными локально и регионально проявляющимися угрозами для устойчивого существования защитных лесов (территории ООПТ и лесопокрытые площади, не подвергающиеся промышленным рубкам) являются пожары, техногенное загрязнение и рекреационные нагрузки. Модели и стратегии управления лесными ресурсами и устойчивостью лесов должны быть регионально адаптированными (Кулагин,2006, 2013). Исследования направлены на проведение объединенного анализа значения ключевых факторов динамики лесов конкретного района Челябинской области: восстановление лесных экосистем, пройденных огнем, на территориях с разным типом природопользования.

Сроки работ: июнь-сентябрь

Состав группы: Куянцева Н.Б., Мумбер А.Г.

Районы работ: Кыштымское лесничество, Ильменский государственный заповедник.

Цель работ: Получение новых данных по функционированию лесных сообществ Южного Урала под воздействием природных и антропогенных факторов.

Задачи:

- 1. Выявление действия пирогенного и техногенного фактора на динамику лесных сообществ и состояние лесов Челябинской области.
- 2. Оценка вероятных энергетических параметров лесных пожаров в связи со скоростью формирования количественного и качественного состава лесных горючих материалов (ЛГМ) в разных типах древостоев на территории, подверженной выбросам КМК.

Территория исследования. Работы проводили в градиенте между лесами Ильменского государственного заповедника (ИГЗ) и импактной зоной Карабашского медеплавильного комбината (КМК). Леса занимают 85% площади ИГЗ. Пожары – закономерный и перманентный фактор существования сосновых лесов; за 1948-2014 гг. число пожаров в ИГЗ увеличилось и наблюдалось перераспределение локализации очагов возгораний. КМК (г. Карабаш) – крупный источник атмосферных выбросов SO2 и пыли тяжелых металлов. Зона нарушенных экосистем простирается до 15-25 км от КМК. В систему ПП включены приспевающие, спелые и перестойные сосновые леса естественного происхождения, относящиеся к трем типам лесорастительных условий (ТЛУ; ТЛУ 1 – вершины, ТЛУ 2 – склоны, ТЛУ 3 – подошвы склонов) на горных фрагментарных и горнолесных бурых почвах. По давности пожарного воздействия все ПП относятся к одной из двух групп: «недавно горелые» (давность последнего задокументированного пожара 1–14 лет) и «давно горелые» (давность последнего задокументированного пожара более 14 лет, и ПП, на которых пожары не были задокументированы. Горелыми ПП пройдены низовыми устойчивыми средними пожарами. Годы пожаров определяются по «Книге учета пожаров Ильменского заповедника» и Кыштымского лесничества.

Содержание работ:

1. Проведены учеты в разнотипных и разновозрастных горельниках (кв. 74, 97; рис. 1, 2). Заложены новые ПП на территории Кыштымского лесничества (г. Карабаш; рис. 3, 4).

Дана оценка санитарного состояния древостоев, численности и распределения подроста и всходов, оценка динамики усыхания стволов (табл. 1, 2); состояние живого напочвенного покрова (видовая насыщенность фитоценоза, проективное покрытие, обилие). Для оценки скорости формирования количественного и качественного состава лесных горючих материалов (ЛГМ) в горельниках, находящихся под влиянием выбросов КМК (ПП 187-40, 188-55, 196-14, 197-38), на минерализованных полосах (МП) заложены 4 трансекты (10 УП х 0,1 м²). Для оценки скорости накопления органического вещества лесной подстилки подбирались МП разного возраста (от 1 до 8 лет). Высохшую при комнатной температуре подстилку (А₀) на каждой УП разбирали на фракции: хвоя, листья, кора, трава, шишки, живые и мертвые корни. Определялась масса всех компонентов.

Уровень техногенного загрязнения определен на основании концентраций кислоторастворимых форм четырех приоритетных поллютантов (Cu, Zn, Pb, Cd), измеренных в смешанной пробе гумусово-аккумулятивного горизонта почвы. Индекс загрязнения (ИТН) рассчитан как среднее превышение (количество раз) концентраций металлов на каждой площади по сравнению с наименее загрязненной фоновой площадью (Воробейчик, 1994). Закономерности ИЖС древостоя и числа всходов от ИТН, давности пожара, возраста древостоя, сомкнутость крон, ОПП ТКЯ, покрытия мхов проанализированы с использованием трехфакторного дисперсионного анализа (ANOVA) с помощью программы JMP Pro 13.2.1 (SAS Institute Inc., Cary, NC, USA, 2016).

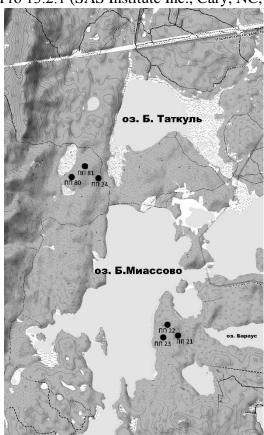


Рисунок-1. Карта-схема расположения ПП лесопирологического мониторинга на территории Ильменского заповедника.

Миассовское лесничество: ПП 97-15 (пожар 1991 г.), пожарные подсушины

Рисунок-2. ПП лесопирологического мониторинга на территории Ильменского заповедника.

Таблица-1. Характеристика ПП лесопирологического мониторинга на территории ИГЗ

ПП/Кв- выдел	год пожара	Координаты	Состав	Возраст	Всходы сосны, шт\га	ИЖС	Описание ИЖС
21/97-15	1991	55.14543048 60.29331910	10С+Б	131	3333	0.43	сильно поврежденный
22/97-3	1991	55.14584741 60.29267537	10С+Б	136	6000	0.38	сильно поврежденный
23/97-14	1952	55.14516069 60.2910870	9С1Б	127	2666	0.46	сильно поврежденный
24/74-1	1920	55.18504468 60.26550995	10C	173	0	0.52	поврежденный
80/74-5	1954	55.18279048 60.25486695	26C	154	4667	0.45	сильно поврежденный
81/74-1	1975	55.18524070 60.25958764	10С+Б	174	2666	0.48	сильно поврежденный

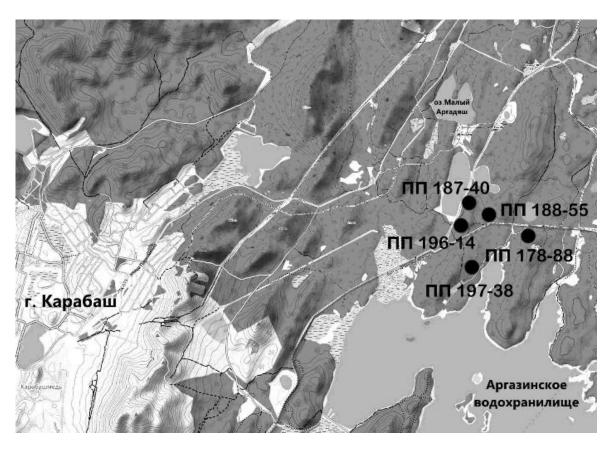


Рисунок-3. Карта-схема расположения ПП лесопирологического мониторинга на территории Кыштымского лесничества

Рисунок-4. ПП лесопирологического мониторинга на территории Кыштымского лесничества.

Таблица-2. Характеристика ПП лесопирологичского мониторинга на территории Кыштымского лесничества

ПП	год пожара	Координаты	Состав	Возраст	Всходы сосны, шт\га	ИЖС	Описание ИЖС
187-40	2010, 2021	55.49987 60.34214	5С3С1Б	85	12000	0,63	поврежденный
188-55	2010	55.49908 60.34494	8С2Б	80	4000	0,6	поврежденный
188-78	К	55.49553 60.36107	6С4Б	115	3333	0,68	поврежденный
196-14	2021	55.49660 E60.3412	9С1Б	70	8000	0,32	сильно поврежденный
197-38	2018	55.49022 60.34897	6С4Б	110	12000	0,58	поврежденный

2. Проведены 2 тура учетов (июнь/сентябрь, 2023 г.) многолетней динамики выживания экспериментальных посадок сосны; влияние разных типов местообитаний на оценку успешности развития на основе годичного прироста подроста (рис. 5).

Подрост *Pinus sylvestris* L. (посадки 2017 г.; биотоп «Луг-2») Рисунок -5. Состояние подроста сосны на экспериментальных площадках.

Предварительные результаты:

В зеленомошных типах леса, в сравнении с разнотравно-вейниковыми и широкотравными под пологом приспевающие, спелых и перестойных древостоев в ИГЗ формируются более благоприятные условия для естественное возобновление сосны. При сравнении территорий ИГЗ и КМК выявлено (табл. 3), что на недавно горелых ПП в среднем в 1,1-1,3 раза число всходов выше, чем на давно горелых при достаточно большом размахе варьирования данных. В естественных местообитаниях причиной успешного возобновления сосны является обнаженное местами состояние субстрата на горельниках, возникающее в результате разрушения живого напочвенного покрова. Качественное состояние взрослых особей сосны, участвующих в репродукции, отражает комплексный показатель ИЖС.

Тер	N	ИТН	Давность	Средний	Численность	Сомкн	Число	Покры
ри			пожара	возраст	всходов, экз./га	утость	видов	тие
тория				древостоя		крон,	ТКЯ/	MXOB,
						%	ОПП, %	%
ИГЗ	12	2,0	Ндгор	130	12800	50-60	37	30-40
					$\overline{0-62000}$		40 - 50	
	29	5,7	Дгор	140	9500			
			_		0-41500			
КМК	16	83,1	Ндгор	80	16600	30-40	16	<1
					$\overline{0-80000}$		$\overline{5-10}$	
	25	67,4	Дгор	90	14400			
			_		0-60000			

Примечание: ИГЗ- Ильменский государственный заповедник, КМК- Карабашский медеплавильный комбинат; N – число ПП; ИТН – индекс техногенной нагрузки; Ндгор - «недавно горелые», Дгор - «давно горелые» ПП; ТКЯ – травяно-кустарничковый ярус; ОПП – общее проективное покрытие травяно-кустарничкого яруса; чертой – средний показатель, под чертой – размах варьирования данных.

В виталитетной структуре сосняков в ИГЗ на долю здоровых особей сосны приходится в среднем более 20 % от всех особей в древостое (табл. 4), в господствующей части популяции сосны обыкновенной преобладают здоровые и ослабленные особи (70 % от общего числа стволов на ПП). ИЖС лесных сообществ давно горелых немного выше, чем недавно горелых. На территории КМК к здоровым особям сосны относятся в среднем менее 15 %, преобладают ослабленные и сильно ослабленные, которые составляют в среднем 80 % от общего числа стволов. ИЖС у молодых и старых горельников одинаковый.

ИЖС сосновых древостоев уменьшается при увеличении ИТН (r = -0.4530; P < 0.0001) и увеличивается при увеличении возраста древостоя (r = 0.3105; P = 0.0045). ИЖС положительно связан с ОПП ТКЯ (r = 0.4587; P < 0.0001) и покрытием мхов (r = 0.4053; P = 0.0002), что характеризует полночленность нижних ярусов лесных сообществ. ИЖС выше в давно горевших сосняках, в сравнении с недавно горевшими, ($F_{(1;80)} = 6.64$; P = 0.0118); зависит от района: больше в ИГЗ по сравнению с КМК ($F_{(1;80)} = 22.03$; P < 0.0001). С уменьшением степени загрязнения территории (в градиенте сосновых лесов от КМК до ИГЗ) достоверно увеличивается число видов ТКЯ ($F_{(1;80)} = 104.86$; P < 0.0001). Не выявлена зависимость числа всходов сосны от давности пожара, возраста древостоя, сомкнутость крон, ОПП ТКЯ и покрытия мхов.

Таблица - 4. Распределение деревьев сосны обыкновенной по категориям жизненного состояния в районе исследований

Тер	Давность	ИЖС	Категории жизненного состояния деревьев, %					
ри	пожара		здоровые	ослабленные	сильно	усыхающие		
тория					ослаблен			
ИГ3	Ндгор	0,6	25	53	18	4		
		0,58-0,81	0-40	31-75	0-31	0-16		

	Дгор	0,7	18	51	30	2
		0,44-0,82	0-41	42-60	0-52	0-7
КМК	Ндгор	0,6	15	40	38	7
	_	0,37-0,73	0-58	12-72	12-62	0-33
	Дгор	0,6	12	51	33	4
		0,35-0,74	0-29	12-73	0-60	0-28

Примечание: ИГЗ- Ильменский государственный заповедник, КМК - Карабашский медеплавильный комбинат; N – число ПП; Ндгор - «недавно горелые», Дгор - «давно горелые»; ИЖС – индекс жизненного состояния древостоя; над чертой – средний показатель, под чертой – размах варьирования данных

В районе КМК установлена положительная связь числа сеянцев сосны с удалением ПП от источника эмиссии (r=0,3479; P=0,0258). Оценена зависимость числа сеянцев сосны от ИЖС (распределение древостоем по классам: здоровые, поврежденные и сильно поврежденные) и района исследования. Эти различия статистически значимы ($F_{(1;77)}=10,94$; P=0,0014; расчёт с помощью двуфакторного ANOVA.

Таким образом выявлено неудовлетворительное возобновление сосны в ИГЗ в сравнении с загрязненной территорией. Основными причинами являются возраст древостоя, конкуренция за свет и почвенные ресурсы с хорошо развитыми ТКЯ и моховым покровом. Низовые пожары, разрушая живой напочвенный покров, стимулируют прорастание и выживание сеянцев сосны.