Проект Российского научного фонда № 23-24-10055 «Устойчивость и разнообразие лесов промышленного региона: взаимодействие сильного техногенного загрязнения и периодических пожаров»

Состав группы: Куянцева Н.Б., Мумбер А.Г., Рассомахин М.А., Молчанова Д.А.

Сроки работ: июнь-сентябрь

Районы работ: Кыштымское лесничество, г. Миасс, Ильменский государственный заповедник.

В лесах умеренной зоны видовое разнообразие деревьев, как правило, невелико, и основное разнообразие растений представлено видами травяно-кустарничкового яруса (ТКЯ), состояние которого может быть индикатором экосистемных процессов и внешних воздействий. Регион возле г. Карабаш — географически протяженный и контрастный по состоянию экосистем импактный регион, образовавшийся под влиянием выбросов крупного медеплавильного производства, работающего более 100 лет. Основные токсиканты — металлы, поступающие из атмосферных выбросов. Другой постоянный фактор, обусловливающий состояние растительности региона, — периодические лесные пожары. Мы предположили, что состояние ТКЯ лесных сообществ возле крупного медеплавильного предприятия на Южном Урале определяется не только техногенным воздействием, но и пожарными нарушениями.

Цель работы: оценить закономерности изменения состояния лесных деревьев, древостоев, сообществ вегетирующих лесных растений и почвенных банков семян одновременно в зависимости от влияния двух факторов: уровня загрязнения почвы тяжелыми металлами и времени, прошедшего после последнего низового пожара.

Задачи:

- 1. Влияние на состояние деревьев, древостоев и на разнообразие лесов промышленного региона двух форм воздействия: техногенного загрязнения и лесных пожаров.
- 2. Техногенная устойчивость банков семян как фактор восстановления лесов промышленного региона после пожара.
- 1. Заложены 20 ПП на основе программ GIS SAS Planet, спутниковых и векторных карт Google maps, topomapper, Bing, OSM Open Topomap (рис. 1, табл. 2), дана характеристика древостоев и сообществ вегетирующих растений, проведены таксационные расчеты с использованием нормативно справочных материалов; сбор проб почвенных и растительных образцов для количественного и качественного анализа (40 пробы).

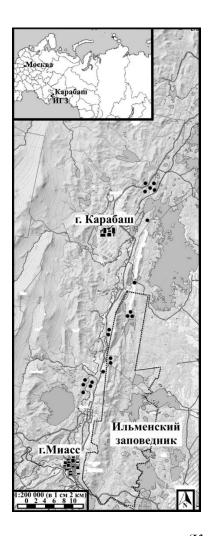


Рисунок-1. ПП лесопирологического мониторинга (Карабашское лесничество, Ильменский заповедник)

Таблица-1. Характеристика ПП лесопирологического мониторинга на территории ИГЗ, Миасского лесничества и Карабашского лесничества

Терри	ПП	Состав	Год	Координаты	Всходы	ИЖС	Описание ИЖС	Расстояние
тория		древостоя	пожара		сосны,		ижс	от трубы,
					шт∖га			КМ
				55.24362°			сильно	
ИГЗ	37-49	10C	контроль	60.20318°	5333	0,47	поврежденный	22,2
				55.24384°				
ИГЗ	33-44	8С2Б	контроль	60.20084°	3333	0,66	поврежденный	20,3
				55.30417°				
ИГ3	13-24	10C	контроль	60.26247°	9333	0,61	поврежденный	15,8
				55.30389°				
ИГ3	13-25	10C	контроль	60.26383°	4666	0,68	поврежденный	15,3
				55.30008°			-	
ИГ3	13-26	10C	контроль	60.26228°	4000	0,65	поврежденный	15,5
				55.43688°				
КМК	83-64	5С4Б1ОС	2023	60.29326°	0	0,54	поврежденный	6,5
				55.34733°			-	
КМК	88-12	8С2Б	2010	60.26825°	0	0,72	поврежденный	14,8
				55.49553				
КМК	188-78	6С4Б	контроль	60.36107	4000	0,68	поврежденный	10,1
				55.49987			•	
КМК	187-40	5С3С1Б	2021	60.34214	12000	0,63	поврежденный	9
				55.49908				
КМК	197-38	6С4Б	2018	60.34494	3333	0,58	поврежденный	9,2

				55.49908				
КМК	188-55	8С2Б	2010	60.34494	4000	0,6	поврежденный	9,4
				55.49660			сильно	
КМК	196-14	9С1Б	2021	60.3412	8000	0,32	поврежденный	9,6
	M86-			55.29395°				
Миасс	15	6С4Б	контроль	60.20260°	4000	0,57	поврежденный	19,4
				55.31506°				
Миасс	M79-2	7С3Б	контроль	60.21545°	2666	0,63	поврежденный	17,1
				55.17546°				
Миасс	M24-4	6С4Б	2021	60.12027°	2000	0,68	поврежденный	33,1
				55.18664°				
Миасс	M21-3	7С3Б	2020	60.13511°	27333	0,62	поврежденный	37,7
				55.19333°				
Миасс	M9-25	8С2Б	контроль	60.13769°	0	0,62	поврежденный	30,1
				55.19465°				
Миасс	M9-26	10С+Б	2023	60.13928°	2666	0,6	поврежденный	29,8
				55.19404°				
Миасс	M9-27	10C	2020	60.14003°	4000	0,58	поврежденный	29,6
	M123-			55.260206				
Миасс	6	10C	контроль	60.199428	1333	0,64	поврежденный	23,2

2. Заложен вегетационный эксперимент второго года по почвенному банку семян (ПБС). Состав и обилие ПБС исследованы методом анализа динамики прорастания семян. Пробы из почвенных горизонтов А0 дерново-подзолистых почв собрали с 16 пробных площадей (ПП): (1) с 8 ПП в березово-сосновых лесах в импактной зоне вблизи КМК в 3.5–9.5 км северо-восточнее КМК; (2) с 8 ПП в сосновых зеленомошных и зеленомошно-разнотравных лесах в фоновой зоне на территории Ильменского государственного заповедника (ИГЗ) в 33–50 км южнее КМК. По 3 независимых повторности материала (субстрата) из подстилок с каждой ПП экспонировали в сосудах (ящиках) с учетом толщины. Всего было 48 сосудов (16 ПП × 1 горизонт × 3 сосуда). Сосуды с июня по сентябрь экспонировали на открытом воздухе, прикрыв сеткой для защиты от животных и от местного семенного дождя (рис. 2). Поливали по мере высыхания субстратов. Проростки учитывали каждые 2 недели.

Рисунок-2. Состояние сосудов в ходе вегетационного эксперимента.

Предварительные результаты:

Целью работы было оценить разнообразие сообществ травяно-кустарничкового яруса сосновых лесов, загрязненных выбросами Карабашского медеплавильного комбината (КМК), при разной давности пожарных нарушений. Проверяли три гипотезы: (1) разнообразие сообществ снижается в загрязненных лесах; (2) разнообразие сообществ снижается в лесах, нарушенных недавними пожарами; (3) последствия загрязнения и пожаров аддитивны, т.е. между последствиями загрязнения и пожаров существует взаимодействие в понимании взаимодействия факторов при использовании аппарата общих линейных моделей (GLM).

Для этого проанализировали 77 геоботанических описаний, которые сделали в загрязненных (41 пробная площадь (ПП) расположена на расстояниях 3.5–12 км от КМК) и незагрязненных (36 ПП – в 25–50 км в Ильменском государственном заповеднике) сосновых лесах, в обоих вариантах – с разной давностью последнего пожара (от 1 года до давно не горевших или вероятно не горевших). Концентрации Сu, Zn, Pb и Cd измеряли в образцах ОF горизонта лесной подстилки на атомно-эмиссионном спектрометре VARIAN-720-ES (метод ИСП-АЭС – ICP-OES). Рассчитывали индекс загрязнения как среднее превышение (количество раз) концентраций металлов на каждой площади по сравнению с наименее загрязненной фоновой площадью. Разнообразие оценивали с помощью: традиционных мер разнообразия; параметров функционального разнообразия (индекс FAD

и Rao); оценки соотношения значимостей видов разных стратегий Грайма; соотношений «dispersal syndromes» (синдромы: анемохоры, автохоры, зоохоры, мирмекохоры) и «dispersal strategies» (стратегии: Allium-type, Bidens-type, Cornus-type, Epilobium-type, Lycopodium-type). Для расчета CSR-координат сообществ использовали показатели проективного покрытия видов.

Было установлено, что ведущее значение для разнообразия ТКЯ имеет фактор техногенного загрязнения. С ростом индекса загрязнения все показатели разнообразия снижались в градиенте от лесов ИГЗ до КМК: покрытие эпигейных мхов уменьшалось со средних значений $42\pm6\%$ до менее 1%; среднее общее проективное покрытие ТКЯ от $50\pm2\%$ до $15\pm3\%$; видовое богатство ТКЯ с 37 ± 1 видов/100 м2 до 16 ± 1 видов/100 м2. Средние значения индекса Шеннона с ростом загрязнения уменьшились в 2 раза: с 2.81 ± 0.04 в ИГЗ до 1.44 ± 0.10 вблизи КМК. Снижение разнообразия ТКЯ сопровождалось значимым уменьшением выравненности и повышением уровня доминирования: средние значения индекса Пиелу составили в лесах ИГЗ 0.79 ± 0.01 и в окрестностях КМК -0.57 ± 0.04 , средние значения индекса Бергера-Паркера в чистых древостоях составили 0.11 ± 0.01 , а при сильном загрязнении -0.43 ± 0.05 (рис. 3).

При снижении видового богатства травяно-кустарничкового яруса в градиенте загрязнения значения FAD снижались (рис. 4). В ИГЗ среднее значение FAD было 4.4±0.1, вблизи КМК – 3.8±0.1; эти различия были значимы. Параметр Rao, который объединяет информацию о видовом богатстве и различиях в функциональных характеристиках между видами, с ростом загрязнения снижался от 0.66±0.01 в лесах ИГЗ до 0.43±0.04 в лесах вблизи КМК. В градиенте загрязнения увеличивались вклады в формирование сообществ видов с компонентами С- и S-стратегий и уменьшался вклад видов с компонентом R-стратегии (рис. 5).

У величивалось значение видов с большой дальностью переноса диаспор — анемохоров и зоохоров. В послепожарной сукцессии возрастало значение зоохоров, включая виды, диаспоры которых переносятся позвоночными и беспозвоночными животными (рис. 6-8).

Последствия пожарных нарушений для разнообразия ТКЯ не установлены. Также не были обнаружены взаимодействия между техногенными и пирогенными воздействиями. Вероятно, пожары (естественный и закономерный фактор формирования светлохвойных лесов) не вызывают в структурно-функциональной организации древесных насаждений таких же сильных изменений, как изменения, обусловленные загрязнением.

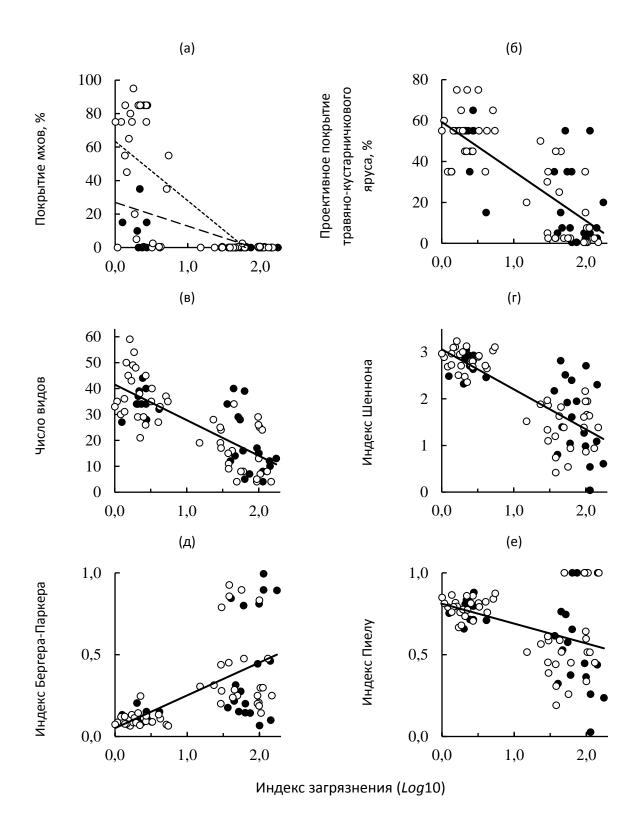
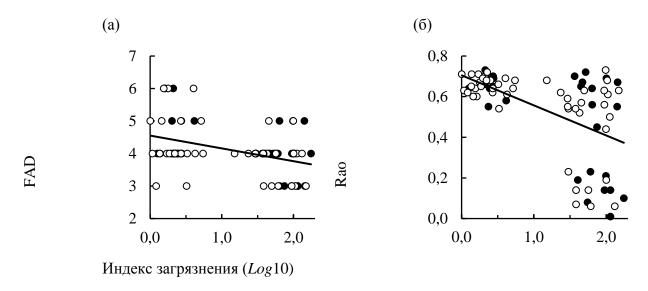
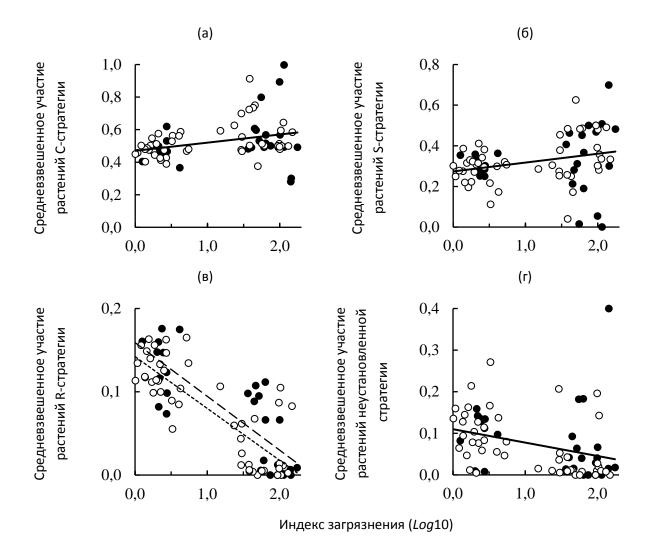
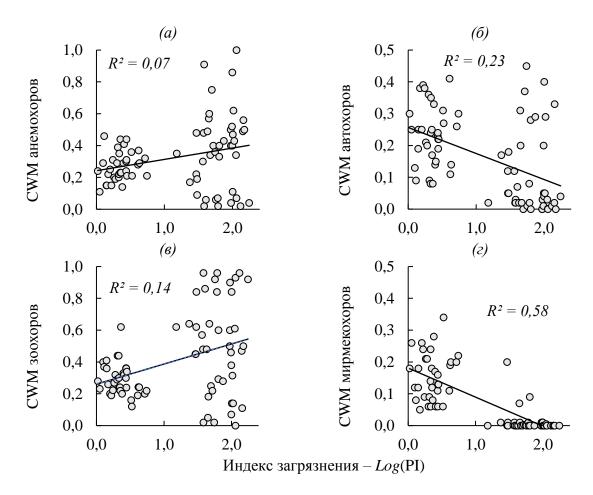
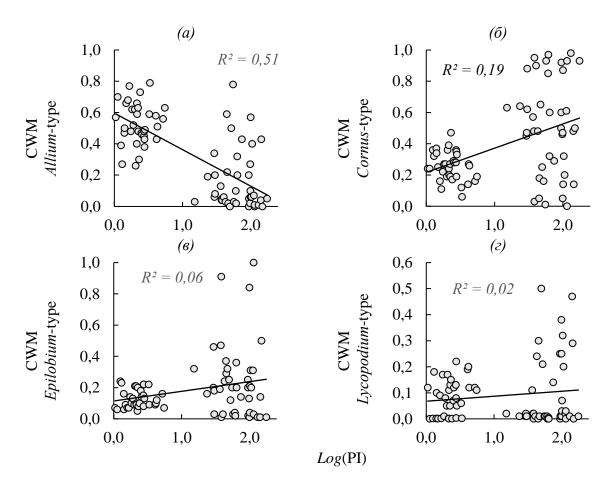
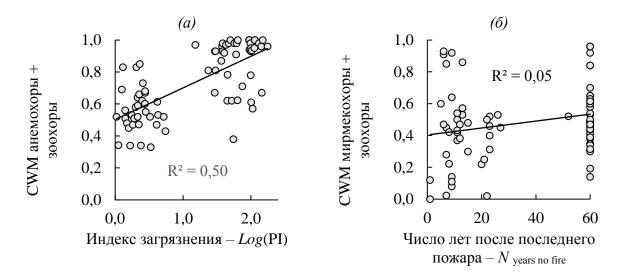


Рисунок - 3. Изменения параметров структуры мохового яруса, структуры и разнообразия травяно-кустарничкового яруса с увеличением степени загрязнения в сообществах с разной давностью последнего пожара: а — покрытие эпигейных мхов; б—е — параметры травяно-кустарничкового яруса (б — проективное покрытие; в — число видов; г — индекс Шеннона; д — индекс Бергера-Паркера; е — индекс Пиелу). Для эпигейных мхов приведены аппроксимации отдельно для недавно горевших (линия с длинными штрихами) и давно не

горевших (линия с кроткими штрихами) сообществ. Здесь и на рисунках 3 и 4: сообщества с разной давностью последнего пожара: черные кружки – горевшие сообщества, в которых пожары были зарегистрированы в последние 1–15 лет; белые кружки – негоревшие сообщества, в которых пожары не были зарегистрированы или их давность более 15 лет; при отсутствии значимого эффекта для фактора "время после пожара" и при отсутствии значимого взаимодействия между факторами "загрязнение" и "время после пожара", приведены общие аппроксимации для недавно горевших и давно не горевших сообществ.


Рисунок - 4. Изменения параметров функционального разнообразия травянокустарничкового яруса (a - FAD; $\delta - Rao$) с увеличением степени загрязнения в сообществах с разной давностью последнего пожара.


Риснок - 5. Изменения средневзвешенного участия растений С-стратегии (а), S-стратегии (б), R-стратегии (в) и растений с неустановленной стратегией (г) с увеличением степени загрязнения в сложении сообществ с разной давностью последнего пожара.

Риснок - 6. Изменения СWM групп видов с разными синдромами распространения по традиционной классификации: анемохоров (а), автохоров (б), зоохоров (в) и мирмекохоров (г) с увеличением степени загрязнения. Указаны значения коэффициентов детерминации для аппроксимации прямой линией.

Риснок - 7. Изменения СWM групп видов с разными стратегиями распространения по новой классификации: *Allium*-type (a), *Cornus*-type (б), *Epilobium*-type (в) и *Lycopodium*-type (г) с увеличением степени загрязнения. Указаны значения коэффициентов детерминации для аппроксимации прямой линией.

Риснок - 8. Изменение CWM группы «анемохоры + зоохоры» в зависимости от степени загрязнения (a) и изменение CWM группы «мирмекохоры + зоохоры» в зависимости от давности последнего пожара (δ). Указаны значения коэффициентов детерминации для аппроксимации прямой линией.